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Abstract
We study the frequency response of large-amplitude oscillations of a trapped
Bose condensed gas. On the basis of the Thomas–Fermi approximation, we
deduce the hydrodynamical equation including the excitation source of the
velocity drive, and obtain the analytical expression for the frequency as a
function of velocity fluctuation amplitude, trap geometry, and symmetry of
modes. By solving the expansion equation after switching off the trap, we
find a simple relationship between the velocity amplitude and the oscillation
amplitude. The theoretical calculations on the response frequencies agree well
with the existing experimental observations.

1. Introduction

The realization of a Bose–Einstein condensate (BEC) in trapped atoms [1, 2] has stimulated
extensive interest in the theoretical study of non-homogeneous interacting Bose gases.
The lower excitation modes, in particular those for the large-amplitude response and the
experimentally required ballistic expansion, have been measured [3, 4]. The theoretical
predictions for the excitation spectrum are in remarkable agreement with the experiments,
and confirm the quantitative validity of the non-linear Schrödinger equation for describing
the evolution of the condensate wavefunction. The equation for the lower excitation
modes of the trapped Bose gases has been studied in detail using analytic methods [5–7],
variational methods [8, 9], and numerical methods [10–13]. Since the experiments [3, 4] were
performed with an axially symmetrical harmonic trap and validated for the regime suited to
hydrodynamical treatment [5], we focus purely on the system with an axial symmetry trap in
the hydrodynamical limit. Fliesser et al [6] and Öhberg et al [7] obtained analytical solutions
for the homogeneous hydrodynamical equation with different treatments. Ma and Chui [14]
also studied the eigenvalue problem of the equation in more detail. By using the techniques of
decoupling and reducing the dimension of the eigenvalue problem, we solved a coupled two-
dimensional hydrodynamical equation and obtained the analytical expressions for all modes
in cylindrical coordinates.
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Furthermore, Pitaevskii and Stringari [15] and Braaten and Pearson [16] calculated the
correction of the excitation spectrum due to the chemical potential change associated with
the density fluctuation in the hydrodynamical limit. Ma et al [17] calculated the correction
of the excitation spectrum due to the kinetic energy enhancement and chemical potential
reduction beyond the hydrodynamical limit. Nevertheless, in order to measure the excitation
spectrum in experiments, first of all, one needs to excite the system to the lower excited
states, meanwhile detecting the amplitude-dependent frequency shifts (including the ballistic
expansion) as in [3, 4]. Theoretically, Dalfovo et al [18] studied the non-linear dynamics of a
BEC using a new non-linear transformation and obtained the frequency response qualitatively,
although the frequency shift is less by about a half than the experimental datum for the large-
amplitude oscillation for the 002 mode (for the definition of the nznsm modes, see below).
Storey and Olshanii [19] carried out an exact treatment of the problem by the trajectory
method and calculated the excitation amplitude-dependent frequency shift. They obtained
a good agreement with the experimental data of [3] for the 002 mode, but did not include the
010 mode from existing experimental data. Liu et al [20] studied the non-linear effects in the
interference of the BEC using an exact solution of the one-dimensional non-linear Schrödinger
equation. Li et al [21] studied the dynamics of a two-component BEC with a coupling drive
by means of a pair of bosonic operators, and obtained the effects of the coupling drive on the
evolution of the relative phase of the two-component BEC. Very recently, Ma and Chui [22]
derived the elementary excitation spectrum of the BEC for any trapped atom number with the
aid of a corrected sum rule and a generalized virial identity.

On the other hand, we know that it is often possible to measure the frequency shift
directly to a very high degree of accuracy. Theoretical studies of the frequency response
of the excitation amplitude need to extend to any excitation mode, or at least to all the existing
experimental modes. Using different but simple treatments, this paper is concerned with the
frequency response of large-amplitude oscillations (including the ballistic expansion) in an
axially trapped interacting Bose gas. The essential features of our treatment in comparison
with the previous theoretical works are as follows. Using the Thomas–Fermi approximation
and considering the excitation source of the velocity drive, we first deduce the inhomogeneous
hydrodynamical equation for the complete modes and then obtain the analytical expressions
for the frequency responses for the 002, 010, and 200 modes. By solving the expansion
equation after opening the trap, we finally obtain an explicit and simple relationship between
the velocity and the oscillation amplitude response. Physically, we can get information on the
frequency response of a BEC under large-amplitude oscillations and understand the concept
of elementary excitations of a trapped Bose condensed gas.

2. Theoretical descriptions

The dynamics of the BEC is described by the non-linear Schrödinger equation for the
macroscopic wavefunction �(r, t):

ih̄�̇(r, t) =
[−h̄2

2M
∇2 + Uext (r) + g|�(r, t)|2 − µ

]
�(r, t) (1)

where Uext (r) = 1
2 Mω2

⊥(s2 + λ2z2) represents the axially symmetric magnetic trapping
potential with harmonic oscillator frequencies ω⊥ in the xy-plane and λω⊥ in the z-axis
direction, g = 4π h̄2asc/M characterizes the atom–atom interaction and is defined in terms
of the s-wave scattering length asc, and the chemical potential µ is determined by the
normalization of �(r, t) with N = ∫ |�(r, t)|2 d3r the atom number. In the present paper
we only consider the case of the large-N limit. In this case we can neglect the kinetic
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energy pressure with respective to the strong atom–atom interaction. We introduce the atom
density ρ(r, t) = |�(r, t)|2 and velocity field v(r, t) = − h̄

M ∇φ(r, t) to substitute for the
wavefunction �(r, t) = √

ρ(r, t) exp[iφ(r, t)]. In the ground state, from ρ(r, t) = ρ0(r),
v(r, t) = 0, and µ = µ0, we have the Thomas–Fermi approximation solution

ρ0(r) = [µ0 − 1
2 Mω2

⊥(s2 + λ2z2)]/g. (2)

The boundary conditions are ρ0(0) = µ0/g at r = 0 and ρ0(R) = 0 at r = R. From
µ0 = 1

2 Mω2
⊥ R2, N = ∫

ρ0(r) d3r = 8π
15λ

R3ρ0(0) and aho = √
h̄/Mω⊥, a harmonic oscillator

characteristic length, one finds that the BEC boundary is R = aho(λP)1/5 and the ground state
chemical potential is µ0 = 1

2 h̄ω⊥(λP)2/5 with P = 15Nasc/aho proportional to the product
of the interaction strength and the atom number. When the parameter P is sufficiently large,
it corresponds to the Thomas–Fermi approximation. For the lower excited states, by writing
ρ(r, t) = ρ0(r) + δρ(r, t) and assuming the chemical potential to be constant since most of
the atoms are in the ground state, one obtains equation (1) in the usual hydrodynamical form

M v̇(r, t) + ∇[g δρ(r, t) + 1
2 Mv2(r, t)] = 0, (3)

ρ̇(r, t) + ∇ · [ρ(r, t)v(r, t)] = 0. (4)

In the linearization of the density fluctuations δρ(r, t), the velocity fluctuation v(r, t) must be
considered, since we are studying the frequency responses of the velocity drive. By combining
equations (3) and (4) and taking into account the terms v2(r, t) and |v ∇ · (ρv)|, we obtain

M δρ̈ + ∇ · (gρ0 ∇ δρ) = −M ∇ · [v ∇ · (ρ0v) + 1
2ρ0v

2]. (5)

Using the ansatz δρ(r, t) = δρ(r) eiωt and v(r, t) = v(r)eiωt/2, equation (5) simplifies to

γ δρ̄(r) + 1
2 ∇̄ · [(1 − s̄2 − λ2 z̄2) ∇̄ δρ̄(r)] = F(r), (6)

F(r) ≡ ∇̄ · {v̄(r) ∇̄ · [(1 − s̄2 − λ2 z̄2)v̄(r)] + 1
2 (1 − s̄2 − λ2 z̄2) ∇̄v̄2(r)} (7)

where ∇̄ ≡ R ∇ is the dimensionless gradient operator, δρ̄(r) ≡ δρ(r)/ρ0(0) is the
dimensionless density fluctuation, v̄(r) ≡ v(r)

√
M/gρ0(0) is the dimensionless velocity

fluctuation, and γ ≡ ω2/ω2
⊥ is the squared frequency relative to the trapping frequency. The

dimensionless linear equation (6) (including the velocity fluctuation) is the hydrodynamical
equation for any excitation mode. The inhomogeneous F(r) term represents the velocity
drive. For a certain excited mode, the velocity fluctuation will take a fixed form. Without the
velocity fluctuation, equation (6) reduces to the usual eigenvalue equation for determining the
elementary excitation spectrum.

Before solving equation (6), we first briefly review its eigensolutions [14] with v(r) ≡ 0
or F(r) ≡ 0. In this special case, the density fluctuation takes the form δρ(0)

nznsm(r) =
s̄|m| P(2ns )

n p
(s̄, z̄)eimϕ with a coupled polynomial

P(2ns )
n p

(z̄, s̄) =
n p∑

k=0

int[k/2]∑
n=0

bk,n z̄k−2n s̄2n . (8)

We had found a principal quantum number n p for the ‘total energy’, n p = 0, 1, 2, . . .. m is the
azimuthal quantum number for the axial component of angular momentum m = 0,±1,±2, . . ..
ns is the radial quantum number for the series of numbers of modes 2ns at the fixed numbers
n p and m, ns = 0, 1, 2, . . . , int[n p/2]. nz is the axial quantum number for the corresponding
mode number, nz = n p − 2ns , i.e., nz = 0, 2, 4, . . . , n p for even n p and nz = 1, 3, 5, . . . , n p

for odd n p. The entire set of elementary excitation modes are labelled by three quantum
numbers, nz , ns , and m (we have denoted them as nznsm modes). The coefficient relation of
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bk,n is

4(n + 1)(n + |m| + 1)bk+2,n+1 + (k − 2n + 2)(k − 2n + 1)bk+2,n

= 4λ2(n + 1)(n + |m| + 1)bk,n+1 − [2γ − 2|m| − 4n(n + |m| + 1)

− λ2(k − 2n)(k − 2n + 1)]bk,n + (k − 2n + 2)(k − 2n + 1)bk,n−1. (9)

Using the decoupling and dimension reduction techniques and taking k = n p in equation (9),
the corresponding eigenvalue is the solution of

−1 = g0

1 + g1

1+ g2

1 + · · · · · · · · ·
. . .

1 +
gZ−2

1+0

, (10)

with Z = 1 + int[n p/2] and

gn = −4λ2(n + 1)(n + |m| + 1)(n p − 2n − 1)(n p − 2n)

2γ − 2|m| − 4n(n + |m| + 1) − λ2(n p − 2n)(n p − 2n + 1)

× [2γ − 2|m| − 4(n + 1)(n + |m| + 2) − λ2(n p − 2n − 2)(n p − 2n − 1)]−1.

(11)

Equation (10) has Z different solutions for ω2
nzns m which have been labelled by the quantum

numbers ns for ns = 0, 1, 2, . . . , int[n p/2].
The existence of an axial parity Pz , i.e., Pz = [+] ([−]) for even (odd) nz , leads to the

coefficients bk,n in equation (9) being proportional only to a density fluctuation amplitude
b0,0 (b1,0). We know that b0,0 (b1,0) → 0 in the homogeneous linear elementary excitation
treatment. However, in order to measure the excitation spectrum, one must apply a finite
fluctuation amplitude experimentally and theoretically. One can also investigate the condensate
response for different driving amplitudes. In this work, the velocity drive leads to the density
fluctuation and is characterized by the inhomogeneous term of equation (6). We assume that
the symmetry of the nznsm modes remains unchanged in all response processes.

Now we can solve equation (6) exactly for lower excitation modes. For the 002
mode, we know the oscillator frequency ω002(v = 0) = √

2ω⊥ and density fluctuation
δρ

(0)

002 = b0,0s̄2 exp(i 2ϕ) in the absence of the velocity drive (v = 0). In order to excite
this radial oscillation, we choose the driving velocity v̄002(r) = us̄ exp(iϕ) with u the relative
velocity fluctuation magnitude. The expression for F(r) in equation (7) becomes F002(r) =
−10u2s̄2 exp(i 2ϕ), and hence equation (6) has a solution of the form δρ̄002(r) = bs̄2 exp(i 2ϕ)

with b the relative density fluctuation magnitude. The corresponding response frequency is

ω002(u) = √
2(1 + 5u2/b)1/2ω⊥. (12)

Which describes an oscillator with a forced term proportional to u2/b.
For the 010 and 200 modes, from equation (10) we know that ω2

nzns0(v = 0) =
[2 + 3

2λ2 ±
√

4 − 4λ2 + 9
4λ4]ω2

⊥, where + (−) represents the 200 (010) mode for λ � 1,
while for λ � 1, + (−) represents the 010 (200) mode. From equation (9) we also know
(nz = 0, 2, ns = 1, 0) that δρ

(0)
nzns0(r) = b0,0(1 + a1s̄2 + a2 z̄2) with a1 = γ (0)/[2 − γ (0)],

a2 = γ (0)[γ (0) − 4]/[2 − γ (0)], and γ (u) ≡ ω2
nzns 0/ω

2
⊥. In those excitations, the system

oscillations are along the z-axis, and the axial and radial oscillations have relative amplitude
a2/a1 = γ (0) − 4 ≡ a. Hence the driving velocity can be chosen as v̄nzns 0(r) = u(s̄ + az̄)

and the expression for F(r) in equation (7) becomes
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Fnzns 0(r) = u2[(3 + 2a + 2a2) − (13 + 6a + 2a2)s̄2 − 3(1 + 2a + 4a2)λ2 z̄2]. (13)

Furthermore, equation (6) for those modes has a solution of the form δρ̄nzns0(r) = b(1 + b1s̄2 +
b2 z̄2) with b1 = [γ − 2(5 + 2a)u2/b]/(2 − γ ) and b2 = [γ − 2a(2 + 5a)u2/b]/(2λ2 − γ ).
The associated frequency γ = γ (u) satisfies the cubic equation

γ 2 − (4 + 3λ2)γ + 10λ2 = (u2/b){4(7 + 4a + 3a2)λ2/γ

+ 2[3λ2 − 7 − 2a + (2 − 3λ2)a2] − (3 + 2a + 2a2)γ }. (14)

The frequency responses depending on u2/b are weak due to the coupling between the
monopole and quadrupole oscillations in the 010 and 200 modes.

3. Results and discussion

In order to make a comparison between the theoretical calculations of equations (12) and (14)
and the experimental data in [3, 4], it is necessary to simulate the atomic cloud expansion,
since the response frequency is measured by imaging the atomic cloud after opening the trap
and allowing an expansion time of a few milliseconds. The trap is opened when starting the
expansion and the velocity fluctuation vanishes during the expansion. From Uext (r) = 0 and
v = 0 in equation (5), we get the expansion equation

M δρ̈e + gρ0(0) ∇2 δρe = 0 (15)

due to the atom–atom interaction. Taking the ansatz δρe(r, t) = δρe(r) ei
√

γ ω⊥t with the
harmonic oscillator frequency

√
γω⊥ = ω = ωnzns m , the wave motion equation (15) simplifies

to

∇̄2 δρe(r) + 2γ δρe(r) = 0. (16)

This is a Helmholtz equation, valid for any excitation mode. In the axial symmetry case, we
can separate the variables and then take the form δρe(r) = ρ0(0)bs̄me−k z̄+imϕ fe(s̄). When k
is a constant and Re k � 0 in a physical situation, the relative density fluctuation amplitude b
maintains its original value from before the expansion. The radial function fe(s̄) satisfies the
equation

f ′′
e +

1 + 2m

s̄
f ′
e + (2γ + k2) fe = 0. (17)

The solution of equation (17) is a first-kind Bessel function of order m, namely fe(s̄) =
Jm(

√
2γ + k2 s̄).

The values of k are determined as the limit values of 〈s̄2〉 with respect to k. Here 〈s̄2〉 is the
mean squared width of the condensate in the radial coordinate. The experimental oscillation
amplitude σ of the condensate corresponds theoretically to

σ = 〈s̄2〉1/2
max − 〈s̄2〉1/2

min

〈s̄2〉1/2
max + 〈s̄2〉1/2

min

. (18)

We next calculate 〈s̄2〉. From ρ(r, t) = ρ0(r) + δρe(r, t) with δρe(r) 	 ρ0(r), N =∫
ρ0(r) d3r, and

∫
δρe(r) d3r = 0, we know that the volume integral is confined within

the spheroid given by λ|z̄| �
√

1 − s̄2. The calculation of 〈s̄2〉 from the expression

〈s̄2〉 = 4π R3

N

∫ 1
0 s̄3 ds̄

∫ √
1−s̄2/λ

0 dz̄ [ρ0(r) + δρe(r, t)] gives

〈s̄2〉 = 2
7 + 15

4 ū2b cos(
√

γω⊥t) fm(k) (19)
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Figure 1. The normalized excitation spectrum ω(σ)/ω(0) as a function of the oscillation amplitude
σ for the 002 and 010 modes in the axially symmetric harmonic potential traps. The dots and
triangles represent the corresponding experimental data for λ = √

8 [3].

with

fm(k) ≡ 2λ

k

∫ 1

0
ds̄ (1 − e−(k/λ)

√
1−s̄2

)s̄m+3 Jm

(√
2γ + k2s̄

)

=
∞∑

i=1

�(i/2 + 1)

i !

(
− k

λ

)i−1 ∞∑
j=0

(−1) j(m + j + 1)

j !�(m + i/2 + j + 3)

(
2γ + k2

4

) j+m/2

=
∞∑

i=0

(
k

λ

)2i ∞∑
j=0

(−1) j(m + j + 1)

j !

(
2γ + k2

4

) j+m/2

×
[

2m+ j+2

(2i)!(2m + 2i + 2 j + 5)!!
− (i + 1)!k

(2i + 2)!(m + i + j + 3)!λ

]
. (20)

In our deduction we have used the series expression for Jm(x) = ∑∞
j=0

(−1) j

j !(m+ j)!(
x
2 )2 j+m and

the integral
∫ 1

0 x p−1(1 − x)q−1 dx = �(p)�(q)/�(p + q).
By substituting the experimental ratio of the axial to radial trap frequencies λ = √

8 and
the normalized frequencies

√
γ ≈ √

γ (0) = √
2 (3.23) for the 002 (010) mode in equation (12)

(equation (14)) together with u = 0 into (20), we have numerically the limit values

f max
2 (0.0) = 0.138, f min

2 (4.3) = −0.048, (21)

f max
0 (0.0) = 0.225, f min

0 (6.4) = −0.083. (22)

Figure 1 shows the experimental data (dots and triangles) from [3] for the normalized excitation
spectrum ω(σ)/ω(0) as a function of the oscillation amplitude σ for the 002 and 010 modes
(respectively). These points were obtained with radial trap frequencies ω⊥/2π of 132 Hz and
129 Hz and an expansion time of 7 ms [3]. The number of condensed atoms was approximately
4500 and is sufficiently large that the Thomas–Fermi approximation is valid. In the absence
of experimental values of the relative density fluctuation amplitude b, we take b = 5.3 and
b = −3.2 for the 002 and 010 modes. We would like to note that for the 010 mode the
relative amplitude a = −0.77 < 0 in v̄010(r) = u(s̄ + az̄) and the coefficient b1 < 0 in
δρ̄010(r) = b(1 + b1s̄2 + b2 z̄2), so we have to choose b < 0. The theoretical curves, calculated
for the experimental parameters and shown in figure 1, agree well with the experimental
observations. Since u2 	 1, the normalized mode excitation spectrum in equations (11)



The frequency response of large-amplitude oscillations of a trapped Bose condensed gas 10111

and (14) simplifies to

ω(σ)

ω(0)
=

√
1 +

σ/b2

c1 − c2σ
, (23)

with c1 = 0.121 (1.17) and c2 = 0.059 (−0.541) for the 002 (010) mode.
Finally, let us make concluding remarks.

(i) The theoretical elementary excitation corresponds to δρ(0)(r) ∝ b0,0 (b1,0) → 0, while the
experimental excitation corresponds to δρ(r) 	 ρ0(r), and hence the relative fluctuation
amplitudes, u and b, are finite.

(ii) From N = ∫
[ρ0(r)+ δρ(r, t)] d3r we can determine b as a function of N . For simplicity,

we have chosen
∫

δρ(r, t) d3r = 0, so b becomes a control parameter. However, we are
able to determine its sign for modes of a certain kind.

(iii) The BEC occurs near the centre of magnetic traps and the volume integral mainly
contributes in the middle region of the traps. So the linearization condition δρ̄002(r) 	
ρ0(r) leads to b 	 s̄−2 ∼ 102.

(iv) We find in figure 1 that the frequency of the 002 mode increases with increasing oscillation
amplitude, while the frequency of the 010 mode shows a little increase. This behaviour
is obvious, as shown in equation (23), both for the values of c1 and for the sign of c2 due
to the coupling between modes.

(v) The key result of equation (23) is easy to generalize to all excitations that could be studied
in future experiments.
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